Two inequalities for the Hadamard product of matrices

نویسنده

  • Linlin Zhao
چکیده

Correspondence: [email protected] Department of Mathematics, Dezhou University, Dezhou, 253023 Shandong, China Abstract Using a estimate on the Perron root of the nonnegative matrix in terms of paths in the associated directed graph, two new upper bounds for the Hadamard product of matrices are proposed. These bounds improve some existing results and this is shown by numerical examples. MSC 2010: 15A42; 15B34

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak log-majorization inequalities of singular values between normal matrices and their absolute values

‎This paper presents two main results that the singular values of the Hadamard product of normal matrices $A_i$ are weakly log-majorized by the singular values of the Hadamard product of $|A_{i}|$ and the singular values of the sum of normal matrices $A_i$ are weakly log-majorized by the singular values of the sum of $|A_{i}|$‎. ‎Some applications to these inequalities are also given‎. ‎In addi...

متن کامل

Hermite-Hadamard inequality for geometrically quasiconvex functions on co-ordinates

In this paper we introduce the concept of geometrically quasiconvex functions on the co-ordinates and establish some Hermite-Hadamard type integral inequalities for functions defined on rectangles in the plane. Some  inequalities for product of two geometrically quasiconvex functions on the co-ordinates are considered.

متن کامل

On inequalities involving the Hadamard product of matrices

Abstract. Recently, the authors established a number of inequalities involving integer powers of the Hadamard product of two positive de nite Hermitian matrices. Here these results are extended in two ways. First, the restriction to integer powers is relaxed to include all real numbers not in the open interval ( 1; 1). Second, the results are extended to the Hadamard product of any nite number ...

متن کامل

On the Hadamard product of inverse M-matrices

We investigate the Hadamard product of inverse M-matrices and present two classes of inverse M-matrices that are closed under the Hadamard multiplication. In the end, we give some inequalities on the Fan product of M-matrices and Schur complements. © 2000 Elsevier Science Inc. All rights reserved. AMS classification: 15A09; 15A42

متن کامل

Ela on a Schur Complement Inequality for the Hadamard Product of Certain Totally Nonnegative Matrices

Under the entrywise dominance partial ordering, T.L. Markham and R.L. Smith obtained a Schur complement inequality for the Hadamard product of two tridiagonal totally nonnegative matrices. Applying the properties of the Hadamard core of totally nonnegative matrices, the Schur complement inequalities for the Hadamard product of totally nonnegative matrices is obtained, which extends those of T.L...

متن کامل

On a Schur complement inequality for the Hadamard product of certain totally nonnegative matrices

Under the entrywise dominance partial ordering, T.L. Markham and R.L. Smith obtained a Schur complement inequality for the Hadamard product of two tridiagonal totally nonnegative matrices. Applying the properties of the Hadamard core of totally nonnegative matrices, the Schur complement inequalities for the Hadamard product of totally nonnegative matrices is obtained, which extends those of T.L...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012